
KE2012 Project

Recipe adjustment for diabetic and hypoglycemic patients

January 28th, 2013

Alex Olieman
alex.olieman@student.uva.nl

Julien Lehuen
julien@lehuen.net

Michael Wolbert
michael.wolbert@gmail.com

Contents

1. Context analysis

1.1 Worksheet OM-1: problems & solutions

1.2 Worksheet OM-2: process & people involved

1.3 Worksheet OM-5: technical and business feasibility

1.4 Worksheet TM-1: task analysis

1.5 Worksheets TM-2: knowledge used in the selected task

1.6 Worksheets AM-1: humans: expected capabilities and skills

2. Knowledge model

2.1 Task knowledge

2.1.1 Task template

2.1.2 Task decomposition diagram

2.1.3 Task and Task method description

2.2 Inference knowledge

2.3 Domain knowledge

2.3.1 Domain schema

2.3.2 Rule types

2.3.3 Knowledge base

2.4 Scenarios

2.4.1 Fast lasagne with pork and spinach

2.4.2 Beetroot chocolate cake

3. Communication model

3.1 Communication plan

3.2 Worksheets CM-1: Transactions description

3.3 Worksheets CM-2: Information exchange specifications

4. Design model

4.1 Worksheet DM-1: System architecture

4.2 Worksheet DM-2: Target implementation platform

5. The prototype

5.1 Description

5.2 How it works

5.2.1 Heuristic evaluation version

5.2.2 Verify-Critique-Modify version

5.3 What is missing

5.4 Example scenarios

6. Reflection

6.1 Reflection on project approach

6.2 Reflection on knowledge elicitation

6.3 Reflection on knowledge modeling

6.4 Reflection on prototyping

6.5 Future work

Bibliography

APPENDICES

APPENDIX A - Expert interview: card sorting

APPENDIX B - Traces: “heuristic evaluation” version

B.1 Fast lasagne with pork and spinach

B.2 Beetroot chocolate cake

APPENDIX C - Traces: “verify-critique-modify” version

C.1 Fast lasagne with pork and spinach

C.2 Beetroot chocolate cake

1. Context analysis

1.1 Worksheet OM-1: problems & solutions

1.2 Worksheet OM-2: process & people involved

Organization Model Problems and Opportunities Worksheet OM-1

PROBLEMS AND OPPORTUNITIES ● Medical condition
● Need to watch levels of sugar/carbs/etc.
● Very few available recipes
● Possibility to adapt existing recipes
● Ingredients substitutions, omissions

ORGANIZATIONAL CONTEXT Mission, vision, goals of the organization:
The diet-advising organization wants to provide suitable recipes for people with
glycemic conditions. Nowadays, possible substitutes exist for almost all ingredients (e.g.
lactose intolerant people have no trouble replacing all problematic ingredients with soy-
based ingredients). The goal of the organization is to propose the easiest way to proceed
such recipe adaptation, for blood glucose-related conditions.

Important external factors the organization has to deal with:
People have different tastes, and the substitutions might not please everyone. Religion
and allergies could also be an issue. Lastly, people with a condition often don’t wish to
eat alone, and the final recipe should feel “normal” to others.

Strategy of the organization:
Capitalizing a large knowledge base about ingredients and substitutions, to be able to
process any recipe. The panel of recipes could then be “infinite”, without the need for
extra work from a diet advisor.

Its value chain and the major value drivers:
Diet-advising organisations are publicly funded on a national level. Our knowledge-
based system adds value by applying the knowledge from guidelines which were already
produced in the past into an automated process. The diet-advisor keeps his or her role of
intermediate between the needs of a customer and the general diet guidelines, but this
link is made stronger through a system which assists the user in everyday life.

SOLUTIONS ● Semi-automatic system
● Knowledge about recipes and ingredients
● Check existing recipes
● Replace, adjust quantities, and omit ingredients

Organization Model Variant Aspects Worksheet OM-2

STRUCTURE See Figure 1. Use cases and Figure 2. Organigram

PROCESS See Figure 3. Activity diagram

PEOPLE ● Organisation
○ Management
○ Diet advisor

● Customer

RESOURCES ● Information systems
○ Recipes database
○ Ingredients database

● Technical equipment
○ Computers for the diet advisor / at home
○ Mobile devices (phones/tablets) for use while shopping

KNOWLEDGE ● Ingredients properties
● Glycemic constraints
● Possible substitutions/omissions
● Recipes

CULTURE AND POWER Power:
Patients hire the diet adviser for a session in which evaluation of the patients current eating
habits and conditions is performed. The diet advice which results from this session are not
enforced on the patient, hence its an advice. Therefore the power relation is rather flexible
between the two parties.

Culture:
The consultation between a patient and a diet adviser is informal given the personal advice.
The sessions are open for discussion and no one enforces power over the other.

Figure 1. Use cases

Figure 2. Organigram

Figure 3. Activity diagram

diet

patient

consultsadvises

1.3 Worksheet OM-5: technical and business feasibility

Organization Model Checklist for Feasibility Decision Document: Worksheet OM-5

BUSINESS FEASIBILITY 1. Benefits
The automation of recipe adaptation will provide the organization with a very large panel of
recipes for people with a glucose-related condition. Such people are many and the quick and
automatic generation of suitable recipes is a true benefit.
2. Added value
Diet advisor can focus on specific tasks, without having to do this repetitive systematic job.
Customers will get more ideas instead of limiting themselves to the few recipes they are used
to. The life of both the advisor and the customer will be made easier this way.
3. Costs
Consequent developing costs to create the system and gather all the required knowledge. The
costs of gathering knowledge should be kept low by reusing existing knowledge of recipes
and nutritional values of ingredients.
Very low running costs to keep the equipment running and let the system work.
4. Alternatives
Giving personalized advice on the recipe level manually will give a lot of work to the diet
advisors.
5. Organizational changes
Diet advisors will have a more specific role, and people should directly be given access to the
system’s outputs in some way.
6. Risks and uncertainties
People could dislike the impersonal aspects of such system. Because no culinary knowledge
is represented in the system, some adapted recipes might not taste well or be difficult to
prepare.

TECHNICAL FEASIBILITY 1. Task complexity
The task itself is very simple. The required knowledge is a - as complete as possible - listing
of ingredients with their properties, associated to substitution/omission knowledge and a
recipes database. The analysis and the modification of a given recipe is basically a calculation
on the recipe ingredients properties, and eventually some substitutions and/or omissions until
thresholds are met.
2. Critical aspects
The most critical aspect of the recipe adaptation is probably the prioritization of the possible
recipe modification. The effect on the glycemic-related values should be maximized and the
taste changes should be minimized.
3. Success measures
The system outputs new recipes, which should then be “tried” (cooked and tasted) by test-
users. Patients using the system should also report whether their symptoms are alleviated
when following the adjusted recipes. This evaluation would state if the system is a success.
4. User interaction complexity
The user interaction is simple, since it only consists in the choice of a recipe, maybe some
personalisation and the output of an adapted recipe.
5. Other systems interaction complexity
The system could benefit from the interaction with existing ingredients and/or recipe
knowledge systems, which would add complexity to the project.
6. Risks and uncertainties
The gathering of a consequent knowledge base still feels very uncertain. Diet advisors might
have to contribute manually, since an automatic crawling could give vague/incomplete
results.

1.4 Worksheet TM-1: task analysis
Note: the worksheet is only filled for the most knowledge intensive task.

PROJECT FEASIBILITY 1. Commitment
The diet advisor is committed to work closely with the development team, to share
knowledge, help build the models and perhaps fill the knowledge bases.
2. Resources
Personal hardware is enough to set the first prototypes up.
3. Knowledge
The data about recipes and ingredients should be gathered automatically into a DataBase
Management System. Diet advisor could complete the base with constraints and calculations.
4. Realistic
The final system is rather ambitious and some issues could be quite complex.
Building a prototype with the simplest kinds of rules is still realistic.
5. Organization
The diet advice organization has a hosted website, which could welcome a recipe adaptation
system.
6. Risks and uncertainties
No specific risks are to be expected during the prototyping phase.

PROPOSED ACTIONS 1. Focus
The team will focus on the building of a simplified prototype.
This is interesting and feasible, while aiming at a complete system is too ambitious.
2. Target solution
Working prototype and demo with two or three recipes.
3. Results and benefits
A working prototype would show the possible use of a knowledge-related system, and
suggest the further development of a final system.
4. Project actions
Create models and designs. Spiral development of the prototype until January 25th.
5. Change conditions
RAS

Task Model Task Analysis Worksheet TM-1

TASK 04 - Recipe adaptation

ORGANIZATION Diet advice (Sèfi Willemsen)

GOAL AND VALUE Modify an original recipe until it meets a set of constraints

DEPENDENCY AND FLOW Preceding Tasks:
01 - User connection
02 - Recipe selection
03 - Constraints listing

Follow-up Tasks:
05 - Recipe checking
06 - Recipe output

OBJECTS HANDLED Input Objects:
● Original recipe
● Constraints

1.5 Worksheets TM-2: knowledge used in the selected task
Note: This worksheet is filled four times for the four kinds of knowledge items: recipe, ingredient, fix
action, constraints.

Output Objects:
● Modified recipe

Internal Objects:
● Ingredients
● Fix actions

TIME AND CONTROL Frequency, Duration:
The user input should be kept simple, and would never exceed 2 to 5 minutes.
The computation itself should be as quick as possible (1 to 5 seconds).

Control:
The system should constantly check for constraints and recipe coherence.

Constraints & Conditions:
● Preconditions: the recipe is coherent
● Postconditions: the recipe is coherent and respects the glucose-related constraints
● Constraints

○ maximum glycemic load
○ calories, fiber, and protein constraints

AGENTS Running on a server
Use of databases

KNOWLEDGE AND
COMPETENCE

The output of the system could be saved as an history, so that the recipe is re-used later without
going through the whole process again. This idea would then make the task described in TM-2
a generator of knowledge for the organization...

RESOURCES 1 (web)server
4 knowledge bases: recipes, ingredients, constraints & fix actions

QUALITY AND
PERFORMANCE

Test-users have to cook and taste the output recipes, and fill evaluation forms

Task Model Knowledge Item Worksheet TM-2

Name:
Possessed by:
Used in:
Domain:

Recipe
“people” in general
02 - Recipe selection ; 04 - Recipe adaptation
Cooking (Health & care)

NATURE OF THE KNOWLEDGE

Formal, rigorous

Empirical, quantitative ✓

Heuristic, rules of thumb

Highly specialized, don specific

Experience-based ✓ (bottleneck)

Action-based ✓

Incomplete ✓ (to be improved)

Uncertain, may be incorrect

Quickly changing

Hard to verify ✓ (to be improved)

Tacit, hard to transfer ✓ (bottleneck)

FORM OF THE KNOWLEDGE

Mind ✓ (bottleneck)

Paper ✓ (to be improved)

Electronic ✓

Action skill

Other

AVAILABILITY OF THE KNOWLEDGE

Limitations in time

Limitations in space

Limitations in access ✓

Limitations in quality ✓ (to be improved)

Limitations in form ✓ (bottleneck)

Task Model Knowledge Item Worksheet TM-2

Name:
Possessed by:
Used in:
Domain:

Ingredient properties
Databases, indexes
04 - Recipe adaptation ; 05 - Recipe checking
Cooking (Health & care)

NATURE OF THE KNOWLEDGE

Formal, rigorous

Empirical, quantitative ✓

Heuristic, rules of thumb

Highly specialized, don specific

Experience-based ✓ (bottleneck)

Action-based ✓

Incomplete ✓ (to be improved)

Uncertain, may be incorrect

Quickly changing

Hard to verify ✓ (to be improved)

Tacit, hard to transfer ✓ (bottleneck)

FORM OF THE KNOWLEDGE

Mind

Paper ✓ (to be improved)

Electronic ✓

Action skill

Other

AVAILABILITY OF THE KNOWLEDGE

Limitations in time

Limitations in space ✓

Limitations in access ✓

Limitations in quality ✓

Limitations in form ✓ (to be improved)

Task Model Knowledge Item Worksheet TM-2

Name:
Possessed by:
Used in:
Domain:

Fix actions
System
04 - Recipe adaptation
Cooking (Health & care)

NATURE OF THE KNOWLEDGE

Formal, rigorous

Empirical, quantitative ✓

Heuristic, rules of thumb ✓

Highly specialized, don specific

Experience-based ✓ (bottleneck)

Action-based

Incomplete ✓ (to be improved)

Uncertain, may be incorrect

Quickly changing

Hard to verify ✓ (to be improved)

Tacit, hard to transfer

FORM OF THE KNOWLEDGE

Mind ✓ (to be improved)

Paper

Electronic ✓

Action skill

Other

AVAILABILITY OF THE KNOWLEDGE

Limitations in time

Limitations in space

Limitations in access ✓

Limitations in quality ✓ (to be improved)

Limitations in form ✓ (bottleneck)

Task Model Knowledge Item Worksheet TM-2

Name:
Possessed by:
Used in:
Domain:

Constraints
User (“extracted” by the diet advisor)
04 - Recipe adaptation
Health, condition

NATURE OF THE KNOWLEDGE

Formal, rigorous ✓

Empirical, quantitative ✓

Heuristic, rules of thumb ✓

Highly specialized, don specific ✓

Experience-based

Action-based

Incomplete

Uncertain, may be incorrect

Quickly changing ✓ (bottleneck)

Hard to verify

Tacit, hard to transfer

1.6 Worksheets AM-1: humans: expected capabilities and skills
Note: The AM-1 worksheet is filled here for two agents: the diet advisor and the user

FORM OF THE KNOWLEDGE

Mind

Paper ✓ (to be improved)

Electronic ✓

Action skill

Other

AVAILABILITY OF THE KNOWLEDGE

Limitations in time ✓

Limitations in space

Limitations in access ✓ (to be improved)

Limitations in quality

Limitations in form

Agent Model Agent Worksheet AM-1

NAME Diet advisor

ORGANIZATION Works for the organization;
Meets users (clients).

INVOLVED IN 01 - User connection
06 - Recipe output

COMMUNICATES WITH Users

KNOWLEDGE Recipes
Ingredient properties

OTHER COMPETENCIES Knowledge of good practices
Social, able to work with the user

RESPONSIBILITIES AND CONSTRAINTS User’s health and diet
Client relation

Agent Model Agent Worksheet AM-1

NAME User (client)

ORGANIZATION Is a client of the organization
Meets the diets advisor
Interacts with the system

INVOLVED IN 01 - User connection
02 - Recipe selection
03 - Constraints listing
06 - Recipe output

COMMUNICATES WITH Diet advisors

KNOWLEDGE Personal taste
Religion
Allergies

OTHER COMPETENCIES Use a computer and access the web
Understand a recipe and cook

RESPONSIBILITIES AND CONSTRAINTS Own health and diet
Medical condition

2. Knowledge model

2.1 Task knowledge

2.1.1 Task template
The template inference structure which matches our system best is the configuration design
template. Especially, the propose-critique-modify (PCM) method corresponds a lot to the way
our system could proceed (Chandrasekaran, 1990). Section 2.2 presents an inference structure
that is based on this template, annotated with specificities of our system. The main
modifications of the template inference structure are the replacement of specify with search, and
the omission of soft requirements. Furthermore, we expect recipes to violate multiple
constraints, where the template assumes that only one constraint will be violated at a time. We
also modified the original inference, so that any new version of the recipe goes through the
verification step before being modified again.

2.1.2 Task decomposition diagram
The tasks involved for the goal of our system, adjusting meal recipes, is twofold (see Figure 4).

First, the user searches for recipe instances in the knowledge base by entering a concept query
(Van Harmelen et al. 2009). An example of such a concept query could be ‘Italian spaghetti’.
This results in a set of recipe instances which are of the type ‘Italian spaghetti’ (or any of its
subclasses). The user then selects one recipe from the result set.

Second, the PCM task method takes as input the received recipe from the search task method via
the obtain transfer function. The PCM task method is used to configure the recipe based on
constraints and preferences. The control regimen of the inference steps in the PCM task method
may be looped over several times. This is specified further by the following subsection.

Figure 4. Task knowledge model for recipe search and propose-critique-modify.

2.1.3 Task and Task method description
TASK configuration-design;

ROLES:
INPUT:

requirements: “personal dietary guidelines, as provided by the diet advisor”;
query: “search terms, including the (partial) name and/or attribute values of a recipe”;

OUTPUT:
design: “the reconfigured recipe”;

END TASK configuration-design;

TASK METHOD propose-critique-modify;
REALIZES: configuration-design;
DECOMPOSITION:

INFERENCES: operationalize, search, propose, verify, critique,
select, modify;

ROLES:
INTERMEDIATE:

hard-requirements: “requirements to be used as hard constraints”;
skeletal-design: “the initial recipe and its ingredients”;
extension: “modified (adjusted quantity, addition, omission, substitution) ingredient for
recipe”;
violations: “constraint(s) violated by the current recipe”;
truth-value: “Boolean indicating result of the verification”;
action-list: “ordered list of possible recipe fix actions (adjust ingredient quantity,

adjustin

cla

configuration

retri
verif

critiq sele

mod

rece

prov

rece provobta

search

search propose-

propose-

ingredient addition, ingredient omission, ingredient substitution)”;
action: “ a single recipe fix action”;

CONTROL-STRUCTURE:
operationalize (requirements -> hard-requirements);
search (query -> skeletal-design);
WHILE NEW-SOLUTION propose(skeletal-design + design => extension) DO

design := extension ADD design;
verify(design + hard-requirements -> truth-value + violations);
IF truth-value == false
THEN

critique(violations + design -> action-list);
REPEAT

select(action-list -> action);
modify(design + action -> design);
verify(design + hard-requirements -> truth-value + violations);

UNTIL truth-value == true;
END REPEAT

END IF
END WHILE

END TASK-METHOD propose-critique-modify;

2.2 Inference knowledge

Figure 5. Annotated inference structure for modified configuration task.

2.3 Domain knowledge

2.3.1 Domain schema

requirement

operatio

search skeletal

hard

propose

verifydesign

violations truth valuecritique

modify

action

select action list

Personal dietary

Parameter

New version of

E.g. glycemic Is the recipe

List of possible

Replace

extension

Selected initial

query

Search terms, e.g.

Knowledge role Type Domain schema

hard requirements dynamic recipe-constraint

skeletal-design static recipe

violations dynamic recipe-constraint

action dynamic recipe-fix-action

design dynamic recipe

The domain schema for our system is presented in Figure 6. Recipes and their ingredients are
associated through the association relation has-ingredient which holds the quantity of an
ingredient of the given recipe. Recipe-fix-action consist of ingredient quantity adjustment,
ingredient omission, ingredient addition and ingredient substitution. For the latter two, an
association is needed to a single ingredient as additive and substitute respectively. All recipe-fix-
actions target a has-ingredient instance (e.g. quantity adjustment modifies the has-ingredient
quantity attribute). If a recipe-constraint (e.g. the glycemic load of a recipe is too high) is
violated, the violation attribute holds ‘true’. Therefore each recipe-constraint should have at
least one recipe-fix-action associated to propose a possible fix for the recipe. An example for this
is that the veganism-constraint has associations with an omission and substitution fix action to
remove or replace any animal ingredients from the design.

We have chosen to leave the parameter concept out of the domain schema for sake of clarity. We
argue that predefined values are not necessary at this moment to be stored in a separate
parameter concept, but may instead be represented as attributes of recipes and ingredients.
Also, the computed values can be stored in attributes of the recipe concept instead of in the
parameter concept. It is important to note that the recipe attributes glycemic-load, calories,
saturated-fats, proteins and fibers are the computed values for one serving of the given recipe.
These attributes are consequents of the recipe-calculation-rules as presented in sections 2.3.2
and 2.3.3.

Furthermore, we have introduced some (not all!) subclasses of the ingredient concept to
demonstrate the integration of a food related ontology. These concepts can be used to evaluate
and find suitable fix-actions (e.g. substitution), but may also be used in the future to write rules
regarding culinary knowledge.

Two domain-specific concepts may require an additional explanation. The glycemic index (GI)
of an ingredient gives an indication of the relative blood glucose-response that is to be expected
after eating the respective ingredient. Values for the GI are obtained by giving healthy
participants a portion of the food containing a fixed amount of carbohydrates, and measuring
their blood glucose levels at fixed intervals. This result is normalized by comparing the found
blood glucose-response to the known response for pure glucose, which has GI = 100.

While the GI allows the comparison of ingredients in an abstract sense, there is a need to
estimate the actual blood glucose-response that will occur after consuming a food. To this end,
the concept of glycemic load (GL) is used. The glycemic load takes into account both the amount
of carbohydrates in the portion of food and the respective GI. It can be calculated for any
quantity of an ingredient, but can also be summed for an entire recipe. This allows the creation
of constraints on dishes that are meaningful to diabetic and hypoglycemic patients.

Figure 6. Domain schema for the recipe reconfiguration domain.

2.3.2 Rule types
The design element from the domain schema template of configure design, map to recipe and
ingredient concepts in our domain schema. The rule types that are found in configuration design
are presented below, modified slightly to match the domain schema. Preference expressions are
not used because we only consider hard-requirements.

recipe implies recipe-

recipe

Figure 7. recipe-constraint-rule type

RULE-TYPE recipe-constraint-rule
ANTECEDENT: recipe
CARDINALITY: 1+;

CONSEQUENT: recipe-constraint
CARDINALITY: 1;

CONNECTION-SYMBOL:
implies;

END RULE-TYPE recipe-constraint-rule

Figure 8. recipe-calculation-rule type

RULE-TYPE recipe-calculation-rule
ANTECEDENT: recipe
CARDINALITY: 1+;

CONSEQUENT: recipe
CARDINALITY: 1;

CONNECTION-SYMBOL:
calculates;

END RULE-TYPE recipe-calculation-rule

2.3.3 Knowledge base
In this knowledge base we include instances of constraint rules, calculation rules and fix-actions.
Instances of recipes and ingredients are described in section 2.4 Scenarios.

KNOWLEDGE-BASE recipe-reconfiguration;
USES:
recipe-constraint-rule FROM recipe-reconfiguration-schema,
recipe-calculation-rule FROM recipe-reconfiguration-schema;

EXPRESSIONS:
Glycemic load rule instance
recipe.glycemic-load > recipe.course.maximum-glycemic-load.value
	 IMPLIES
maximum-glycemic-load.violation = true;

Saturated fat rule instance
recipe.saturated-fats > recipe.course.maximum-saturated-fats.value

recipe calculate recipe

recipe-

	 IMPLIES
maximum-saturated-fats.violation = true;

Calorie rule instances
recipe.calories > recipe.course.maximum-calories.value
	 IMPLIES
maximum-calories.violation = true;

recipe.calories < recipe.course.minimum-calories.value
	 IMPLIES
minimum-calories.violation = true;

Fiber rule instance
recipe.fibers < recipe.course.minimum-fibers.value
	 IMPLIES
minimum-fibers-constraint.violation = true;

Protein rule instances
recipe.proteins > recipe.course.maximum-proteins.value
	 IMPLIES
maximum-proteins.violation = true;

recipe.proteins < recipe.course.minimum-proteins.value
	 IMPLIES
minimum-proteins.violation = true;

Abstinence rule instances
recipe.has-ingredient.dairy OR recipe.has-ingredient.meat
	 IMPLIES
veganism.violation = true;

recipe.has-ingredient.dairy
	 IMPLIES
lactose-allergy.violation = true;

recipe.has-ingredient.nuts OR recipe.has-ingredient.pulses
	 IMPLIES
nut-allergy.violation = true;

recipe.has-ingredient.pork OR recipe.has-ingredient.mollusks
OR recipe.has-ingredient.crustaceans
	 IMPLIES
kosher.violation = true;

recipe.has-ingredient.milk AND recipe.has-ingredient.meat
	 IMPLIES
kosher.violation = true;

recipe.has-ingredient.pork OR recipe.has-ingredient.alcohol
	 IMPLIES
halal.violation = true;

Calculation rule instances
FORALL x:recipe.has-ingredient

sum(x.ingredient.glycemic-index *
x.ingredient.carbohydrates-fraction * (x.quantity /
recipe.servings))
CALCULATES

recipe.glycemic-load;

FORALL x:recipe.has-ingredient
sum(x.ingredient.saturated-fats-fraction * (x.quantity /
recipe.servings))
CALCULATES

recipe.saturated-fats;

FORALL x:recipe.has-ingredient
sum(x.ingredient.calories * (x.quantity / recipe.servings))
CALCULATES

recipe.calories;

FORALL x:recipe.has-ingredient
sum(x.ingredient.fiber-fraction * (x.quantity /
recipe.servings))
CALCULATES

recipe.fibers;

FORALL x:recipe.has-ingredient
sum(x.ingredient.protein-fraction * (x.quantity /
recipe.servings))
CALCULATES

recipe.proteins;

Fix-action instances
fix-action(action(adjustment), recipe.has-ingredient.quantity);

VAR x, y: ingredient;
fix-action(action(substitution), recipe.has-ingredient.x,

recipe.has-ingredient.y);

fix-action(action(addition), recipe.has-ingredient.ingredient);

fix-action(action(omission), recipe.has-ingredient.ingredient);

END KNOWLEDGE-BASE recipe-reconfiguration;

2.4 Scenarios
To illustrate the objectives of our system, we asked Z. van Nahuijs to tell us what adjustments
she would usually do on ten example recipes. These are the kind of adjustments we would want
our system to make on any recipe that would be included in the knowledge base. Two of these
recipes and their respective adjustments are presented below. Following the two scenarios, we
describe how the knowledge base is filled with instances of recipes and ingredients.

2.4.1 Fast lasagne with pork and spinach
Ingredients for the ragu and spinach sauce:
● 1 tbsp oil
● 450g pork sausage meat
● 1 red chilli, deseeded and finely chopped
● 2 fat cloves garlic, crushed
● 150g button mushrooms, sliced
● 200 ml full-fat crème fraiche
● 100g baby spinach, roughly chopped
● salt and freshly ground black pepper

Ingredients for the tomato and thyme sauce:
● 400g can chopped tomatoes
● 2 tbsp sun-dried tomato paste
● 1 tbsp demerara sugar
● 1 tbsp fresh thyme leaves

Ingredients for the lasagne:	 	
● 6 sheets, about 75g quick-cook white lasagne or fresh lasagne
● 200g strong cheddar cheese, grated

Recipe adjustments
Most of the adjustments are ingredient-related. Some ingredients have to be replaced, some
others can simply be used in lower doses or omitted. Ingredients can also be added.

Replacements:
● Beef meat instead of pork meat (=> less saturated fat)
● Whole wheat lasagna instead of white (=> more fiber)
● Goat’s cheese instead of cheddar (=> less lactose and saturated fat)
● Baking soda instead of sugar (=> lower glycemic load, still reduces acidity)

Omission
● Crème fraiche (=> too much saturated fat, lactose and additives)

Additions
● More vegetables (=> more fiber)

2.4.2 Beetroot chocolate cake
Ingredients:
● 200g butter, plus extra for greasing
● 250g cooked and peeled beetroot
● 200g dark chocolate (70% cocoa solids)
● 4 tbsp hot espresso
● 135g plain flour
● 1 heaped tsp baking powder
● 3 tbsp cocoa powder
● 5 free-range eggs, separated
● 190 g golden caster sugar
● crème fraîche or double cream, to serve

Recipe adjustments
Here again, most of the adjustments are ingredient-related. Some ingredients have to be
replaced, some others can simply be used in lower doses or omitted.

Replacements:
● Oil instead of butter (=> less saturated fat)
● Whole wheat flour instead of white (=> more fiber)

Omission
● Crème fraiche (=> too much saturated fat, lactose and additives)
● Sugar (=> too high glycemic load)

Addition
More baking powder (=> because whole wheat flour has no additive)

2.4.3 Instances of recipes and ingredients
For the users of this system it is desirable to be able to choose from the greatest possible
diversity of recipes. Therefore, we give a brief overview of the possibility to gather instances of
recipes and ingredients automatically. A great amount of recipes could be gathered from the
Web by crawling methods. This is aided by the existence of the existence of the hRecipe
microformat , which is already in use by several search engines. However, for the scenarios and 1

testing we found it sufficient to add five recipes to the knowledge base manually. We used
“beetroot chocolate cake”, “cheeseburger with skinny fries”, “delicious fried rice”, “fast lasagne
with pork and spinach”, and “gingerbread pancakes” from the BBC recipe site . 2

When looking for nutritional facts of ingredients on the Web, much conflicting information can

 http://microformats.org/wiki/hrecipe1

 http://www.bbc.co.uk/food/recipes/2

be found. It is therefore preferable to use reliable data sources in the definition of ingredient
instances. Wolfram|Alpha is an example of a provider which allows programmatic access to its 3

databases, which have a broad coverage of curated data for the food and nutrition domain. To
define ingredient instances for the scenarios, we automatically retrieved nutritional data from
Freebase . For some ingredients no data could be found on Freebase, so this was manually 4

added from Wolfram|Alpha. Both sources, however, do not offer any glycemic index values for
ingredients. We used the overview compiled by Foster-Powell, Holt, & Brand-Miller (2002).
The following syntax gives an example of the instances that represent recipes and ingredients.

INSTANCE beetroot-cake;
INSTANCE-OF recipe;
ATTRIBUTES:

name: ‘Beetroot chocolate
cake’;

servings: 6;
cuisine: Irish;

END INSTANCE

TUPLE
INSTANCE-OF: course;
ARGUMENT-1: cake;
ARGUMENT-2: dessert;

END TUPLE

TUPLE
INSTANCE-OF: has-ingredient;
ARGUMENT-1: cake;
ARGUMENT-2: sugar;
ATTRIBUTES:
quantity: 200.0;
function: ‘sweetener’,

‘texturizer’;
END TUPLE

INSTANCE sugar;
INSTANCE-OF sweetener;
ATTRIBUTES:
name: ‘Sugar’;
glycemic-index: 68;
protein-fraction: 0.0;
fiber-fraction: 0.0;
saturated-fats-fraction: 0.0;
carbohydrates-fraction: 0.9998;
calories: 3.86941;

INSTANCE fast-lasagne;
INSTANCE-OF recipe;
ATTRIBUTES:
name: ‘Fast lasagne with pork

and spinach’;
servings: 6;
cuisine: Italian;

END INSTANCE

TUPLE
INSTANCE-OF: course;
ARGUMENT-1: fast-lasagne;
ARGUMENT-2: starter;

END TUPLE

TUPLE
INSTANCE-OF: has-ingredient;
ARGUMENT-1: fast-lasagne;
ARGUMENT-2: cheddar;
ATTRIBUTES:
quantity: 200.0;
function: ‘topping’;

END TUPLE

INSTANCE cheddar;
INSTANCE-OF cheese;
ATTRIBUTES:
name: ‘Cheddar’;
glycemic-index: 0;
protein-fraction: 0.25;
fiber-fraction: 0.0;
saturated-fats-fraction: 0.21;
carbohydrates-fraction: 0.01;
calories: 4.03;

END INSTANCE

 http://www.wolframalpha.com/examples/FoodAndNutrition.html3

 http://www.freebase.com/schema/food/nutrition_fact4

3. Communication model

3.1 Communication plan

Figure 9. Communication plan

3.2 Worksheets CM-1: Transactions description

User

System

Diet Advisor

Need to Make diet

Express diet Operationali

Look for Search for

Modify Select

Prepare

Request

Inform
Summarize

Send Consider

Send

Send

Send

Communication Model Transaction Description Worksheet CM-1

TRANSACTION IDENTIFIER Request advice

INFORMATION OBJECT Medical diagnoses, the general health condition, and the
eating habits of the user.

AGENTS INVOLVED User, Diet Advisor

CONSTRAINTS Pre-condition: Medical diagnoses have been made.
Post-condition: The diet advisor has enough
information to make diet guidelines.

Communication Model Transaction Description Worksheet CM-1

TRANSACTION IDENTIFIER Inform user

INFORMATION OBJECT Diet guidelines (meal schedule, ingredients to avoid/
include, portion sizes)

AGENTS INVOLVED Diet Advisor, Patient

CONSTRAINTS Pre-condition: Personal diet guidelines have been made.
Post-condition:

Communication Model Transaction Description Worksheet CM-1

TRANSACTION IDENTIFIER Summarize

INFORMATION OBJECT The diet guidelines are quantified and summarized into
constraints on meal parameters.

AGENTS INVOLVED Diet Advisor

CONSTRAINTS Pre-condition:
Post-condition:

Communication Model Transaction Description Worksheet CM-1

TRANSACTION IDENTIFIER Send constraints

INFORMATION OBJECT Constraints on meal parameters

AGENTS INVOLVED Diet Advisor, System

CONSTRAINTS Pre-condition: The constraints could be expressed as
lower and upper limits on parameters of single dishes.
Post-condition:

Communication Model Transaction Description Worksheet CM-1

TRANSACTION IDENTIFIER Query

INFORMATION OBJECT A query, consisting of the (partial) name of a dish, a
course, and/or cuisine.

AGENTS INVOLVED User, System

CONSTRAINTS Pre-condition: The patient is planning a meal.
Post-condition:

Communication Model Transaction Description Worksheet CM-1

TRANSACTION IDENTIFIER Send results

INFORMATION OBJECT A ranked set of search results (recipes)

AGENTS INVOLVED System, Patient

CONSTRAINTS Pre-condition: The query returned at least one result.
Post-condition:

Communication Model Transaction Description Worksheet CM-1

TRANSACTION IDENTIFIER Send selection

INFORMATION OBJECT One recipe from the search results

AGENTS INVOLVED User, System

CONSTRAINTS Pre-condition:
Post-condition:

Communication Model Transaction Description Worksheet CM-1

TRANSACTION IDENTIFIER Send recipe

INFORMATION OBJECT The modified recipe

AGENTS INVOLVED System, Patient

CONSTRAINTS Pre-condition:
Post-condition:

3.3 Worksheets CM-2: Information exchange specifications

Communication Model Information Exchange Specification Worksheet
CM-2

TRANSACTION Request advice

AGENTS INVOLVED Sender: User
Receiver: Diet Advisor

INFORMATION ITEMS Medical diagnoses, the general health condition, and the
eating habits of the user.
Role: core
Form: structured conversation
Medium: speech or writing

MESSAGE SPECIFICATION Type: REQUEST
Content:
Reference:

CONTROL OVER MESSAGES

Communication Model Information Exchange Specification Worksheet
CM-2

TRANSACTION Inform patient

AGENTS INVOLVED Sender: Diet Advisor
Receiver: Patient

INFORMATION ITEMS Diet guidelines (meal schedule, ingredients to avoid/
include, portion sizes)
Role: core
Form: temporal overview, lists
Medium: writing

Explanation of diet guidelines
Role: supporting
Form: remarks / annotations
Medium: speech or writing

MESSAGE SPECIFICATION Type: PROPOSE
Content:
Reference:

CONTROL OVER MESSAGES

Communication Model Information Exchange Specification Worksheet
CM-2

TRANSACTION Summarize

AGENTS INVOLVED Sender: Diet Advisor
Receiver: Diet Advisor

INFORMATION ITEMS Constraints on meal parameters
Role: core
Form: upper and lower limits
Medium: fields on patient record (written or digital)

MESSAGE SPECIFICATION Type: REPORT
Content: limits for glycemic load, saturated fat, dietary
fibers, protein, and calories
Reference: domain knowledge of the diet advisor

CONTROL OVER MESSAGES

Communication Model Information Exchange Specification Worksheet
CM-2

TRANSACTION Send constraints

AGENTS INVOLVED Sender: Diet Advisor
Receiver: System

INFORMATION ITEMS Role: core
Form: natural numbers
Medium: HTML form input fields

MESSAGE SPECIFICATION Type: ORDER
Content: limits for glycemic load, saturated fat, dietary
fibers, protein, and calories
Reference:

CONTROL OVER MESSAGES

Communication Model Information Exchange Specification Worksheet
CM-2

TRANSACTION Query

AGENTS INVOLVED Sender: User
Receiver: System

INFORMATION ITEMS Role: core
Form: data string (containing keywords and concepts)
Medium: HTML form input fields

MESSAGE SPECIFICATION Type: ASK
Content: query terms
Reference:

CONTROL OVER MESSAGES

Communication Model Information Exchange Specification Worksheet
CM-2

TRANSACTION Send results

AGENTS INVOLVED Sender: System
Receiver: Patient

INFORMATION ITEMS Role: core
Form: a ranked set of recipes
Medium: HTML ordered list, with hrefs to recipes

MESSAGE SPECIFICATION Type: REPLY
Content: the ranked set of recipes
Reference:

CONTROL OVER MESSAGES

Communication Model Information Exchange Specification Worksheet
CM-2

TRANSACTION Send selection

AGENTS INVOLVED Sender: User
Receiver: System

INFORMATION ITEMS Role: core
Form: recipe identifier
Medium: HTML button

MESSAGE SPECIFICATION Type: ORDER
Content: the identifier of the selected recipe
Reference:

CONTROL OVER MESSAGES

Communication Model Information Exchange Specification Worksheet
CM-2

TRANSACTION Send recipe

AGENTS INVOLVED Sender: System
Receiver: Patient

INFORMATION ITEMS The modified recipe
Role: core
Form: table presentation of ingredient names,
quantities, and preparation methods
Medium: HTML element

Modified recipe parameter values
Role: support
Form: table presentation of parameter values &
compliance with the active constraints
Medium: HTML element

MESSAGE SPECIFICATION Type: REPORT
Content: the modified recipe, parameter values, and
compliance with the constraints
Reference:

CONTROL OVER MESSAGES

4. Design model

4.1 Worksheet DM-1: System architecture

As stated above, the subsystem of our system should be implemented with MVC principles. MVC
is concerned with the separation of distinct aspects of an application. We argue that, given our
incremental approach, we should first focus on implementation of the controller (control flow,
input, output) and application model (tasks, inferences, domain schema and data). For the first
iteration we implement a simple console which receives input and displays output to external
agents. The next development iteration may feature the implementation of a more appealing
graphical interface as a view component.

4.2 Worksheet DM-2: Target implementation platform

Architecture Decision System Architecture worksheet DM-1

Subsystem architecture Model View Controller (MVC) principles

Control model There should be centralized control for the component
(controller) which handles input.

Subsystem decomposition The model is decomposed using OO principles.

Design Model Target Implementation Platform worksheet DM-2

Software package Java EE

Potential hardware Server: Hardware which supports an OS to run a Java
Virtual Machine (JVM). The following listing presents the
minimum resource requirements of the hardware in order to
provide a system which is able to run our application while
still being responsive;
- OS: Mac OS, Windows or Unix
- 1x 2.0 GHz core
- 512MB memory
- 2GB free space on hard disk

Client: Hardware which supports web-browsing.

Target hardware Any Java Server in a DataCenter would be suitable to host
the main server of the application. Clients can be any
personal device with a web access (desktop computer,
laptop, smartphone, tablet).

Visualization library Web standards (HTML/CSS/JS) connected to J2EE web-
services.

Language typing Strongly typed and OO

Knowledge representation Procedural

Interaction protocols - J2EE web-services
- HTML forms

Control flow -

5. The prototype

5.1 Description
During the short period we had to build a prototype, we decided to develop only the core idea of
the future hypothetical system. We worked specifically on the knowledge-intensive task:
modification of a recipe while respecting constraints.

We first started to develop the prototype using Pyke , a knowledge-based inference engine 5

which works with Python , but is inspired by Prolog. We expected to be able to simply specify 6

our domain model and different sets of rules to the engine, and to let it work for us on the
modification through backward-chaining. However, Pyke considers assertions to be immutable;
i.e. doesn’t allow for facts to be modified or retracted during runtime. This did not suit the
Propose-Critique-Modify method well, because a new (identifiable) recipe had to be created for
every iteration. Unfortunately, because of our lack of experience in logic programming, the use
of this engine became too complicated and time consuming for us.

Implementing the adjusting program ourselves, without relying on an existing inference engine
then felt like a better solution. We decided to use Java to represent our domain model in classes 7

and to write a control regimen which executes the necessary inferences and provides a basic
input and output mechanism.

5.2 How it works

5.2.1 Heuristic evaluation version
This heuristic evaluation version was our first approach. We then evaluated the recipe, by
calculating how much difference there was with the different calculated properties of the recipe
and their corresponding constraints. To adjust the recipe at each iteration, we considered every
possible substitution and adjustment: specific substitutions, same-type substitutions and
quantity adjustments. We then evaluated each of these possible new recipes, kept the best one,
and re-iterated until the recipe would have an evaluation of 0 (no difference between properties
and constraint meaning that the recipe is satisfying all constraints).

As shown in Figure 10, this was a kind of heuristic Hill Climbing algorithm , where we have an 8

original state (the recipe), a way to create successors of this state (adjustments), and an

 Pyke: http://pyke.sourceforge.net/5

 Python: http://www.python.org/6

 Java: http://www.oracle.com/technetwork/java/7

 Hill Climbing algorithm: http://en.wikipedia.org/wiki/Hill_climbing8

http://en.wikipedia.org/wiki/Hill_climbing
http://www.python.org/
http://pyke.sourceforge.net/
http://www.oracle.com/technetwork/java/

evaluation function. As such, it is subject to the issues of local optima, and could therefore be
improved with the use of meta-heuristic (i.e. Simulated Annealing).

Figure 10. Adapted Hill Climbing algorithm for recipe adjustment

This version worked quite well and was the one demonstrated to our teachers and classmates on
Friday, January 25th. It corresponds to the commit 132ca6119a of our Github repository.

When finalising this document, we realised that our algorithm had gone in a different direction
than what was planned. We tried to check the mapping between the inference structure steps,
and the steps of this adjusting algorithm (see Figure 10), and realised that the mapping was far
from perfect: we had an evaluation instead of a verification and the selection step relied on this
evaluation instead of using the constraints.

5.2.2 Verify-Critique-Modify version
This second approach was built on top of the previous one, after a major modification of the
main loop. It corresponds to the commit 822d1760e3 of our Github repository. Constraints
classes were added to the code and the algorithm written as shown in Figure 11. To understand
the pseudocode below, it is important to know that:
● the recipe.verify() method returns the constraint with the highest violated recipe

value (e.g. recipe.glycemic-load) relative to the constraint value (e.g. maximum-

while recipe.is_not_ok :
	 best_recipe = recipe
	 // try specific substitutions
	 foreach ingredient of recipe :
	 	 foreach specific_substitution of ingredient :
	 	 	 new_recipe = specific_substitution.apply(recipe)
	 	 	 if new_recipe.is_better(best_recipe) :
	 	 	 	 best_recipe = new_recipe
	 if best_recipe == recipe :

// try same-type substitutions
	 	 foreach ingredient of recipe :

	 	 foreach same_type_substitution of ingredient :
	 	 	 new_recipe = same_type_substitution.apply(recipe)
	 	 	 if new_recipe.is_better(best_recipe) :
	 	 	 	 best_recipe = new_recipe

	 if best_recipe == recipe :
	 	 // try quantity adjustments
	 	 foreach ingredient of recipe :
	 	 	 new_recipe = ingredient.increase(recipe)
	 	 	 if new_recipe.is_better(best_recipe) :
	 	 	 	 best_recipe = new_recipe

	 	 	 new_recipe = ingredient.decrease(recipe)
	 	 	 if new_recipe.is_better(best_recipe) :
	 	 	 	 best_recipe = new_recipe
	 if best_recipe == recipe :
	 	 // impossible to adjust more
	 	 return best_recipe
	 else :
	 	 // next step
	 	 recipe = best_recipe
return recipe

https://github.com/snooze92/ke2013-recipe-adjustor/tree/132ca6119adb21574463f6a642828f457210c5bf
https://github.com/snooze92/ke2013-recipe-adjustor
https://github.com/snooze92/ke2013-recipe-adjustor/tree/822d1760e35b231d99aa9bc2166754a55f8d45b9
https://github.com/snooze92/ke2013-recipe-adjustor

glycemic-load.value) ;
● the critique(recipe) method simply makes the list of all possible fix-actions for a

given recipe ;
● the select(fixActions, violation, recipe) method keeps the fix-action which is

the best at fixing the violated constraint.

Figure 11. Verify-Critique-Modify algorithm for recipe adjustment

The mapping between this version and our inference structure (see Figure 12) then seems
completely obvious, since each step of the inference structure now has a method with the same
name, and the code is also more simple and clear.

Figure 12. Mapping between the inference structure and the algorithms

This version can still be seen as a Hill Climbing algorithm, since it proceeds incrementally, by
successive improvements, and therefore is also subject to local optima.

While the second version seems to correspond more tightly to our models, the first version is
arguably a better solution. The only difference between the two algorithms is in the way the
multiple constraints are combined to select “the best” fix-action at each iteration. In the V-C-M
approach, the selection of one fix-action depends only on one violation and the selected fix-
action is the one which fixes that violation the most. In the heuristic evaluation, all constraints
are combined into the evaluation method, and the selected fix-action is therefore the one which
globally improves the recipe the most.

5.3 What is missing
For the algorithm to be complete, it should consider all possible fix actions. Here only
substitutions and quantity adjustments are considered. Removals and additions should also be
considered. In one way, removal are almost in already because the quantity is free to be adjusted
down to zero, but still: both removals and additions should be added to the algorithm as
separate fix actions.

For the system to be complete, it misses everything that goes around the core function which
was prototyped here: the way diet advisers input constraints, the way users can research a recipe
and get the adjusted version of it, and the way to manage and fill the knowledge base. The

while violation = recipe.verify() is not null :
fixActions = critique(recipe)
fixAction = select(fixActions, violation, recipe)
fixAction.modify(recipe)

Inference Hill Climbing version V-C-M version

Verify Test: “recipe.is_not_ok” recipe.verify() is not null

Critique Possible fix-actions: “foreach” loops critique(recipe)

Select Test: “recipe.is_better(other)” select(fixActions, violation, recipe)

Modify Application: “recipe = best_recipe” fixAction.modify(recipe)

gathering of ingredient properties was already partially addressed with a Python script that is
able to automatically retrieve these properties through the Freebase API.

5.4 Example scenarios
The traces for the heuristic version are shown in APPENDIX B. The results seem very satisfying,
since the recipes were adjusted in a few iterations to a recipe with a correct Glycemic Load. The
use of an heuristic evaluation allows the algorithm to never get into an infinite loop, and the
evaluation can also be made smarter to stop adjusting before all errors are fixed (which is
sometimes impossible). In this version, the adjustments stops if the glycemic load is completely
fixed and the remaining error is below a threshold value (20 for the demonstration).

Figure 13. Adjustment examples

The traces for the V-C-M version are shown in APPENDIX C. This algorithm was able to adjust
the lasagne recipe after a lot more iterations, and could not satisfy all constraints for the
adjustment of the chocolate cake. Figure 13 shows the two recipes and their respective
adjustments. It is interesting to note that almost all ingredient substitutions were the same in
both case, for the lasagne recipe reconfiguration. Only the sugar was replaced in one case by
maple syrup and kept in the other case. The main difference is that the quantities of meat, cream
and cheese were drastically reduced in the V-C-M case. This is because this approach satisfies all
constraints, while the first one simply want to fully satisfy the GL constraint. It would then have
to signal the user that the recipe still contains a bit too much fat and calories. The adjustment is
therefore less perfect in the first case, but the recipe is kept more consistent.

For the chocolate cake, the second approach does not terminate. Because the algorithm does not
stop unless all constraints are fixed, it can reach a situation where there is a cycle of fix actions,
where two constraints are conflicting. In such case, the best that could be done would be to
detect the cycle, and return one of these sensibly different recipes as the best possible

Original Heuristic eval adjustment V-C-M adjustment

Fast lasagne
Olive oil has qty=8.00
Ground pork has qty=450.00
Chili pepper has qty=4.50
Garlic has qty=8.00
Edible mushroom has qty=150.00
Creme fraiche has qty=215.00
Spinach has qty=100.00
Tomato has qty=400.00
Tomato paste has qty=20.00
Sugar has qty=1.50
Lasagnette has qty=75.00
Cheddar has qty=200.00

Fast lasagne
Sunflower oil has qty=8.00
Ground beef has qty=366.53
Chili pepper has qty=4.50
Garlic has qty=8.00
Edible mushroom has qty=150.00
Sour cream has qty=215.00
Spinach has qty=100.00
Tomato has qty=400.00
Tomato paste has qty=20.00
Maple syrup has qty=1.50
Lasagnette has qty=75.00
Soft goat cheese has qty=200.00

Fast lasagne
Sunflower oil has qty=8.00
Ground beef has qty=38.37
Chili pepper has qty=4.50
Garlic has qty=8.00
Edible mushroom has qty=150.00
Sour cream has qty=62.78
Spinach has qty=100.00
Tomato has qty=400.00
Tomato paste has qty=20.00
Sugar has qty=1.50
Lasagnette has qty=75.00
Soft goat cheese has qty=29.98

Beetroot chocolate cake
Flour has qty=135.00
Chocolate has qty=200.00
Beet has qty=250.00
Baking powder has qty=1.00
Cocoa has qty=9.00
Sugar has qty=200.00
Egg has qty=280.00
Butter has qty=200.00

Beetroot chocolate cake
Whole-grain wheat flour has qty=128.25
Chocolate has qty=200.00
Beet has qty=250.00
Baking powder has qty=1.00
Cocoa has qty=9.00
Maple syrup has qty=200.00
Egg has qty=280.00
Sunflower oil has qty=154.76

The system is not able to satisfy
all constraints for this recipe. It
keeps cycling between two
substitution fix-actions. Without
a break an OutOfMemoryError is
thrown by the JVM.

adjustment. Backtracking (which was one of the supposed advantages of Pyke) could also allow
to explore more modification possibilities when cycles would be detected.

The first approach did give better results overall, but the second one was an interesting
approach. Not only because it corresponded more to our original models, but also because it left
more room for improvement: adding cycle detection, backtracking, and trying to have a “smart”
adjustments instead of an “naïve” evaluation could give better results. Satisfying all constraint
when possible would also be a better alternative than stopping as soon as the GL constraint is
satisfied and the others are “good enough”. With the little time we had, though, the heuristic
evaluation was simpler and gave results which seemed better.

One major improvement to both methods would be to consider culinary knowledge. By
considering more constraints than the GL calculation, we tried to keep recipes consistent, but
making sure that a recipe keep its characteristics and quality would be a real challenge. For
instance, replacing the pork with beef in the lasagne completely changes the recipe.

6. Reflection

6.1 Reflection on project approach
Our team had good open communication, mostly via Google Hangout, email and chat. We used
Google Documents for the collaboration at creating all reports and slides. The code was shared
on github, to allow us to work together on the prototype(s).

We agreed to contact our supervisor only if we thought necessary. This resulted in one physical
meeting to discuss our initial knowledge model and some emails.
	
The approach we took was inspired by Frank’s “Spiral approach”; doing small iterations over the
models and prototype to get smaller, but more manageable results. This approach proved to be
successful for us.

6.2 Reflection on knowledge elicitation
The interview with Sèfi Willemsen was very interesting, but her knowledge was too general for
our project. The sorted cards, main outcome of this interview, are presented in APPENDIX A. As
a diet advisor, she knew about ingredient properties, and constraints to watch in a recipe to keep
a consistent meal. She did not have particular knowledge about the specific issues related to
glycemic load. This might be the reason why our system addressed a broader issue than initially
planned in the end, which has a positive (achieved more than expected) and a negative (had
more work and did not stick to the plans) aspects.

While on the phone with a dietician to make an appointment for an interview, we were directed
to online documentation on diabetes diets (Nationale Diabetes Federatie, 2010) without making
an appointment because the expert was very busy. A possibility to avoid this is to plan such
appointments much earlier in the process. An issue which may have arisen from the obtained
documentation, is our own (in)correct interpretation of these documents, which then results in
the phenomena of “becoming one’s own expert”.

As for a potential user of our system, we consulted Zinzi van Nahuijs, who is experienced in
modifying recipes for hypoglycemic symptoms. She provided valuable insights in how she would
want to use a recipe adjustment system, which gave us the confidence that we were dealing with
a real problem that needed to be addressed. Taking the structured elicitation approach of
annotating recipes with her was very important to get an idea of the system output we would
work towards early in the project. This also made clear that it would be difficult for us to
represent the combination of dietary and culinary knowledge that she uses in our system.

6.3 Reflection on knowledge modeling
Initially we envisioned to target our system at diabetic and hypoglycemic patients. Therefore the

glycemic load property of a recipe was most important to be included as a computed value and
constraint rules. While we were modeling these concepts, we noticed that we could easily
incorporate other recipe properties (such as calories, proteins, fibers, saturated fats) as well.
With these properties added we were now able to verify the recipe on these properties too,
resulting in recipes which were more balanced.

An issue we faced during the initial modeling phase was that we were too inclined with the
CommonKADS methodology when it came to domain schema reuse. We tried to squeeze our
domain into the configuration design domain schema template which resulted in some
confusion on our end. Eventually, we figured out how not to use the domain schema template
and ignored aspects of the template which we agreed not a necessity in our domain.

Furthermore, we argue that separation of dietary - and culinary knowledge is very difficult.
Currently, when modifications are made to the recipe, we can not guarantee similar
characteristics and quality (e.g. texture, taste, color) of the resulting recipe in comparison to the
original recipe. Culinary knowledge should i.e. capture an ingredient’s function within a recipe
or in relation to other ingredients to keep the original recipe’s characteristics and quality most
similar while it is being modified.

6.4 Reflection on prototyping
We started to explore which tools we could use for building the prototype when we finished our
initial knowledge model. As argued in the Prototype section, we started to work with Pyke, but
found that we were too inexperienced and that Pyke lacked functionality which was crucial to
our envisioned solution. Working with Pyke caused us to lose about two to three days mainly
because of its learning curve. Although it was an interesting experience, we argue that we naively
followed this route without exploring the use of a general purpose language first.

Eventually, we started to use Java to build our prototype in a custom fashion. Since we were
familiar with the language, we were able to prototype fast. As mentioned in the Prototype
section, we implemented two approaches to the algorithm of recipe modification, which were
both discussed in that previous section.

6.5 Future work
The direction of future work can be divided in knowledge model, prototype and evaluation.

The knowledge model can be further expanded to add more rule instances to the knowledge
base for new constraints. The use of preferences (soft requirements), e.g. try to omit cheese,
might also be an interesting addition to the model. Furthermore, the knowledge model should
have concepts which describe a user profile which captures the diet constraints and preferences
of one or multiple users. In the current knowledge model the course concept is used to store diet
constraints per course.

Currently, the both prototypes only support substitution and quantity adjustment fix actions.
We have modelled omission and addition fix actions but were unable to implement these in the
current prototype. These fix actions have a strong dependency on culinary knowledge. Therefore

we argue that culinary knowledge should be further incorporated into the knowledge model
before considering implementation of these fix actions.

Evaluation of the knowledge models and prototype results should be done with our expert. This
may give valuable insights for discrepancies and next steps in the modeling and development
process. Furthermore, real-life diet constraints (e.g. diabetes type 2 diets; high carbohydrates/
low protein - or (very) low calorie diets (Nederlandse Diabetes Federatie, 2010)) for an
individual should be entered into the system by a diet adviser to evaluate whether the resulting
modified recipes prove to be balanced and sound.

Bibliography

Chandrasekaran, B. (1990). Design problem solving: A task analysis. AI magazine, 11(4), 59.

Foster-Powell, K., Holt, S.H.A., & Brand-Miller, J.C. (2002). International table of glycemic
index and glycemic load values: 2002. American Journal of Clinical Nutrition 5, pp. 5-56.

van Harmelen, F., ten Teije, A., & Wache, H. (2009). Knowledge engineering rediscovered:
towards reasoning patterns for the semantic web. In K-CAP
'09: Proceedings of the 5th international conference on Knowledge capture, pp.
81-88, New York, NY, USA: ACM.

Nederlandse Diabetes Federatie (2010), Voedingsrichtlijn voor diabetes type 1 en 2.,
Amersfoort, retrieved from http://www.diabetesfederatie.nl/start/richtlijnen-en-adviezen/ndf-
voedingsrichtlijnen-bij-diabetes-2010/download.html on 24/1/2013

Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R., Shadbolt, N., van de Velde, W., &
Wielinga, B. (1999). Knowledge engineering and management: the CommonKADS
methodology. MIT press.

Wielinga, B., & Schreiber, G. (1997). Configuration-design problem solving. IEEE Expert, 12(2),
49-56.

http://www.diabetesfederatie.nl/start/richtlijnen-en-adviezen/ndf-voedingsrichtlijnen-bij-diabetes-2010/download.html
http://www.diabetesfederatie.nl/start/richtlijnen-en-adviezen/ndf-voedingsrichtlijnen-bij-diabetes-2010/download.html
http://www.diabetesfederatie.nl/start/richtlijnen-en-adviezen/ndf-voedingsrichtlijnen-bij-diabetes-2010/download.html

APPENDICES

APPENDIX A - Expert interview: card sorting
During the interview, we asked Sèfi Willemsen to give us any ideas that could come to her mind
after we presented her our problem:

We then worked with her at sorting all these concepts:

All these were good research axis for us. In general it was still quite general and required a lot of
work on our side to get specific Glycemic Load related knowledge and apply all of the knowledge
(from Sèfi and ourselves) to the system.

APPENDIX B - Traces: “heuristic evaluation” version

B.1 Fast lasagne with pork and spinach

[LOG] Errors=80.01 (GL=0.00; fats=31.89; proteins=0.00; fibers=0.00; calories=481.12)
[LOG] Replacing Ground pork with Ground beef (scale: 1.00)
[LOG] Errors=44.67 (GL=0.00; fats=21.55; proteins=0.00; fibers=0.00; calories=231.24)
[LOG] Replacing Creme fraiche with Sour cream (scale: 1.00)
[LOG] Errors=32.53 (GL=0.00; fats=15.82; proteins=0.00; fibers=0.00; calories=167.10)
[LOG] Replacing Cheddar with Soft goat cheese (scale: 1.00)
[LOG] Errors=26.03 (GL=0.00; fats=13.82; proteins=0.00; fibers=0.00; calories=122.10)
[LOG] Replacing Olive oil with Sunflower oil (scale: 1.00)
[LOG] Errors=25.96 (GL=0.00; fats=13.75; proteins=0.00; fibers=0.00; calories=122.10)
[LOG] Replacing Sugar with Maple syrup (scale: 1.00)
[LOG] Errors=25.93 (GL=0.00; fats=13.75; proteins=0.00; fibers=0.00; calories=121.79)
[LOG] Adjusting Ground beef quantity from 450.00 to 427.50
[LOG] Errors=24.26 (GL=0.00; fats=13.33; proteins=0.00; fibers=0.00; calories=109.34)
[LOG] Adjusting Ground beef quantity from 427.50 to 406.13
[LOG] Errors=22.68 (GL=0.00; fats=12.93; proteins=0.00; fibers=0.00; calories=97.51)
[LOG] Adjusting Ground beef quantity from 406.13 to 385.82
[LOG] Errors=21.17 (GL=0.00; fats=12.55; proteins=0.00; fibers=0.00; calories=86.28)
[LOG] Adjusting Ground beef quantity from 385.82 to 366.53
[LOG] Errors=19.74 (GL=0.00; fats=12.18; proteins=0.00; fibers=0.00; calories=75.60)

[ORIGINAL] Recipe: Fast lasagne for 6 (Course 'starter')
Olive oil has qty=8.00
Ground pork has qty=450.00
Chili pepper has qty=4.50
Garlic has qty=8.00
Edible mushroom has qty=150.00
Creme fraiche has qty=215.00
Spinach has qty=100.00
Tomato has qty=400.00
Tomato paste has qty=20.00
Sugar has qty=1.50
Lasagnette has qty=75.00
Cheddar has qty=200.00

[ADJUSTED] Recipe: Fast lasagne for 6 (Course 'starter')
Sunflower oil has qty=8.00
Ground beef has qty=366.53
Chili pepper has qty=4.50
Garlic has qty=8.00
Edible mushroom has qty=150.00
Sour cream has qty=215.00
Spinach has qty=100.00
Tomato has qty=400.00
Tomato paste has qty=20.00
Maple syrup has qty=1.50
Lasagnette has qty=75.00
Soft goat cheese has qty=200.00

B.2 Beetroot chocolate cake

[LOG] Errors=52.06 (GL=11.52; fats=18.91; proteins=0.00; fibers=0.00; calories=216.32)
[LOG] Replacing Sugar with Maple syrup (scale: 1.00)
[LOG] Errors=37.30 (GL=0.94; fats=18.92; proteins=0.00; fibers=0.00; calories=174.41)
[LOG] Replacing Butter with Sunflower oil (scale: 1.00)
[LOG] Errors=28.75 (GL=0.94; fats=4.80; proteins=0.00; fibers=0.00; calories=230.18)
[LOG] Replacing Flour with Whole-grain wheat flour (scale: 1.00)
[LOG] Errors=27.61 (GL=0.00; fats=4.86; proteins=0.00; fibers=0.27; calories=224.78)
[LOG] Adjusting Sunflower oil quantity from 200.00 to 190.00
[LOG] Errors=25.99 (GL=0.00; fats=4.71; proteins=0.00; fibers=0.27; calories=210.05)
[LOG] Adjusting Sunflower oil quantity from 190.00 to 180.50
[LOG] Errors=24.45 (GL=0.00; fats=4.57; proteins=0.00; fibers=0.27; calories=196.05)
[LOG] Adjusting Sunflower oil quantity from 180.50 to 171.48
[LOG] Errors=22.98 (GL=0.00; fats=4.43; proteins=0.00; fibers=0.27; calories=182.75)
[LOG] Adjusting Sunflower oil quantity from 171.48 to 162.90
[LOG] Errors=21.59 (GL=0.00; fats=4.30; proteins=0.00; fibers=0.27; calories=170.12)
[LOG] Adjusting Sunflower oil quantity from 162.90 to 154.76
[LOG] Errors=20.27 (GL=0.00; fats=4.18; proteins=0.00; fibers=0.27; calories=158.12)
[LOG] Adjusting Whole-grain wheat flour quantity from 135.00 to 128.25
[LOG] Errors=19.75 (GL=0.00; fats=4.18; proteins=0.00; fibers=0.15; calories=154.29)

[ORIGINAL] Recipe: Beetroot chocolate cake for 6 (Course 'dessert')
Flour has qty=135.00
Chocolate has qty=200.00
Beet has qty=250.00
Baking powder has qty=1.00
Cocoa has qty=9.00
Sugar has qty=200.00
Egg has qty=280.00
Butter has qty=200.00

[ADJUSTED] Recipe: Beetroot chocolate cake for 6 (Course 'dessert')
Whole-grain wheat flour has qty=128.25
Chocolate has qty=200.00
Beet has qty=250.00
Baking powder has qty=1.00
Cocoa has qty=9.00
Maple syrup has qty=200.00
Egg has qty=280.00
Sunflower oil has qty=154.76

APPENDIX C - Traces: “verify-critique-modify” version

C.1 Fast lasagne with pork and spinach

[LOG] Violation: class keadjustor.constraints.MaximumSaturatedFat(3.0)
[LOG] GL=5.48, Calories=831.12, Fats=34.89, Proteins=17.66, Fibers=1.69
[LOG] Replacing Ground pork with Ground beef (scale: 1.00)
[LOG] Violation: class keadjustor.constraints.MaximumSaturatedFat(3.0)
[LOG] GL=5.48, Calories=581.24, Fats=24.55, Proteins=24.06, Fibers=1.69
[LOG] Replacing Creme fraiche with Sour cream (scale: 1.00)
[LOG] Violation: class keadjustor.constraints.MaximumSaturatedFat(3.0)
[LOG] GL=5.48, Calories=517.10, Fats=18.82, Proteins=24.42, Fibers=1.69
[LOG] Replacing Cheddar with Soft goat cheese (scale: 1.00)
[LOG] Violation: class keadjustor.constraints.MaximumSaturatedFat(3.0)
[LOG] GL=5.48, Calories=472.10, Fats=16.82, Proteins=22.42, Fibers=1.69
[LOG] Adjusting Ground beef quantity from 450.00 to 427.50
[LOG] Violation: class keadjustor.constraints.MaximumSaturatedFat(3.0)
[LOG] GL=5.48, Calories=459.65, Fats=16.39, Proteins=21.88, Fibers=1.69
[LOG] Adjusting Ground beef quantity from 427.50 to 406.13
[LOG] Violation: class keadjustor.constraints.MaximumSaturatedFat(3.0)
[LOG] GL=5.48, Calories=447.83, Fats=15.99, Proteins=21.37, Fibers=1.69
[LOG] Adjusting Ground beef quantity from 406.13 to 385.82
[LOG] Violation: class keadjustor.constraints.MaximumSaturatedFat(3.0)
[LOG] GL=5.48, Calories=436.59, Fats=15.61, Proteins=20.88, Fibers=1.69
[LOG] Adjusting Ground beef quantity from 385.82 to 366.53
[LOG] Violation: class keadjustor.constraints.MaximumSaturatedFat(3.0)
[LOG] GL=5.48, Calories=425.92, Fats=15.25, Proteins=20.42, Fibers=1.69
[LOG] Adjusting Ground beef quantity from 366.53 to 348.20
[LOG] Violation: class keadjustor.constraints.MaximumSaturatedFat(3.0)
[LOG] GL=5.48, Calories=415.78, Fats=14.90, Proteins=19.98, Fibers=1.69
[LOG] Adjusting Ground beef quantity from 348.20 to 330.79
[LOG] Violation: class keadjustor.constraints.MaximumSaturatedFat(3.0)
[LOG] GL=5.48, Calories=406.14, Fats=14.57, Proteins=19.57, Fibers=1.69
[LOG] Adjusting Ground beef quantity from 330.79 to 314.25
[LOG] Violation: class keadjustor.constraints.MaximumSaturatedFat(3.0)
[LOG] GL=5.48, Calories=396.99, Fats=14.26, Proteins=19.17, Fibers=1.69
[LOG] Adjusting Ground beef quantity from 314.25 to 298.54
[LOG] Violation: class keadjustor.constraints.MaximumSaturatedFat(3.0)
[LOG] GL=5.48, Calories=388.30, Fats=13.97, Proteins=18.80, Fibers=1.69
[LOG] Adjusting Ground beef quantity from 298.54 to 283.61
[LOG] Violation: class keadjustor.constraints.MaximumSaturatedFat(3.0)
[LOG] GL=5.48, Calories=380.04, Fats=13.69, Proteins=18.44, Fibers=1.69
[LOG] Adjusting Ground beef quantity from 283.61 to 269.43
[LOG] Violation: class keadjustor.constraints.MaximumSaturatedFat(3.0)
[LOG] GL=5.48, Calories=372.20, Fats=13.42, Proteins=18.10, Fibers=1.69
[LOG] Adjusting Ground beef quantity from 269.43 to 255.96
[LOG] Violation: class keadjustor.constraints.MaximumSaturatedFat(3.0)
[LOG] GL=5.48, Calories=364.74, Fats=13.17, Proteins=17.78, Fibers=1.69
[LOG] Adjusting Soft goat cheese quantity from 200.00 to 190.00
[LOG] Violation: class keadjustor.constraints.MaximumSaturatedFat(3.0)
[LOG] GL=5.48, Calories=360.27, Fats=12.92, Proteins=17.46, Fibers=1.69
[LOG] Adjusting Ground beef quantity from 255.96 to 243.16
[LOG] Violation: class keadjustor.constraints.MaximumSaturatedFat(3.0)
[LOG] GL=5.48, Calories=353.19, Fats=12.67, Proteins=17.16, Fibers=1.69
[LOG] Adjusting Soft goat cheese quantity from 190.00 to 180.50
[LOG] Violation: class keadjustor.constraints.MaximumSaturatedFat(3.0)
[LOG] GL=5.48, Calories=348.95, Fats=12.44, Proteins=16.85, Fibers=1.69
[LOG] Adjusting Ground beef quantity from 243.16 to 231.00
[LOG] Violation: class keadjustor.constraints.MaximumSaturatedFat(3.0)
[LOG] GL=5.48, Calories=342.22, Fats=12.21, Proteins=16.56, Fibers=1.69
[LOG] Adjusting Soft goat cheese quantity from 180.50 to 171.48
[LOG] Violation: class keadjustor.constraints.MaximumSaturatedFat(3.0)
[LOG] GL=5.48, Calories=338.19, Fats=11.98, Proteins=16.28, Fibers=1.69
[LOG] Adjusting Ground beef quantity from 231.00 to 219.45
[LOG] Violation: class keadjustor.constraints.MaximumSaturatedFat(3.0)
[LOG] GL=5.48, Calories=331.80, Fats=11.77, Proteins=16.00, Fibers=1.69
[LOG] Adjusting Soft goat cheese quantity from 171.48 to 162.90
[LOG] Violation: class keadjustor.constraints.MaximumSaturatedFat(3.0)
[LOG] GL=5.48, Calories=327.97, Fats=11.55, Proteins=15.73, Fibers=1.69

C.2 Beetroot chocolate cake

[LOG] Violation: class keadjustor.constraints.MaximumSaturatedFat(6.0)
[LOG] GL=46.52, Calories=716.32, Fats=24.91, Proteins=11.99, Fibers=3.41
[LOG] Replacing Butter with Sunflower oil (scale: 1.00)
[LOG] Violation: class keadjustor.constraints.MaximumSaturatedFat(6.0)
[LOG] GL=46.52, Calories=772.09, Fats=10.79, Proteins=11.71, Fibers=3.41
[LOG] Adjusting Chocolate quantity from 200.00 to 190.00
[LOG] Violation: class keadjustor.constraints.MaximumSaturatedFat(6.0)
[LOG] GL=46.08, Calories=763.17, Fats=10.48, Proteins=11.58, Fibers=3.35
[LOG] Adjusting Chocolate quantity from 190.00 to 180.50
[LOG] Violation: class keadjustor.constraints.MaximumSaturatedFat(6.0)
[LOG] GL=45.65, Calories=754.69, Fats=10.18, Proteins=11.46, Fibers=3.30
[LOG] Adjusting Chocolate quantity from 180.50 to 171.48
[LOG] Violation: class keadjustor.constraints.MaximumSaturatedFat(6.0)
[LOG] GL=45.25, Calories=746.64, Fats=9.91, Proteins=11.35, Fibers=3.24
[LOG] Adjusting Chocolate quantity from 171.48 to 162.90
[LOG] Violation: class keadjustor.constraints.MaximumSaturatedFat(6.0)
[LOG] GL=44.87, Calories=739.00, Fats=9.64, Proteins=11.24, Fibers=3.20
[LOG] Adjusting Chocolate quantity from 162.90 to 154.76
[LOG] Violation: class keadjustor.constraints.MaximumSaturatedFat(6.0)
[LOG] GL=44.51, Calories=731.73, Fats=9.39, Proteins=11.13, Fibers=3.15
[LOG] Adjusting Chocolate quantity from 154.76 to 147.02
[LOG] Violation: class keadjustor.constraints.MaximumSaturatedFat(6.0)
[LOG] GL=44.16, Calories=724.83, Fats=9.15, Proteins=11.03, Fibers=3.11
[LOG] Adjusting Chocolate quantity from 147.02 to 139.67
[LOG] Violation: class keadjustor.constraints.MaximumSaturatedFat(6.0)
[LOG] GL=43.84, Calories=718.28, Fats=8.92, Proteins=10.94, Fibers=3.06
[LOG] Adjusting Chocolate quantity from 139.67 to 132.68
[LOG] Violation: class keadjustor.constraints.MaximumSaturatedFat(6.0)
[LOG] GL=43.52, Calories=712.05, Fats=8.71, Proteins=10.85, Fibers=3.02
[LOG] Adjusting Chocolate quantity from 132.68 to 126.05
[LOG] Violation: class keadjustor.constraints.MaximumSaturatedFat(6.0)
[LOG] GL=43.23, Calories=706.13, Fats=8.50, Proteins=10.77, Fibers=2.99
[LOG] Adjusting Chocolate quantity from 126.05 to 119.75
[LOG] Violation: class keadjustor.constraints.MaximumCalories(500.0)
[LOG] GL=42.95, Calories=700.51, Fats=8.31, Proteins=10.69, Fibers=2.95
[LOG] Replacing Sunflower oil with Butter (scale: 1.00)
[LOG] Violation: class keadjustor.constraints.MaximumSaturatedFat(6.0)
[LOG] GL=42.95, Calories=644.74, Fats=22.43, Proteins=10.97, Fibers=2.95
[LOG] Replacing Butter with Sunflower oil (scale: 1.00)
[LOG] Violation: class keadjustor.constraints.MaximumCalories(500.0)
[LOG] GL=42.95, Calories=700.51, Fats=8.31, Proteins=10.69, Fibers=2.95
[LOG] Replacing Sunflower oil with Butter (scale: 1.00)
[LOG] Violation: class keadjustor.constraints.MaximumSaturatedFat(6.0)
[LOG] GL=42.95, Calories=644.74, Fats=22.43, Proteins=10.97, Fibers=2.95
[LOG] Replacing Butter with Sunflower oil (scale: 1.00)

...

Note: replacement of Sunflower oil with Butter and vice versa goes on. Ultimately the system
can not satisfy all constraints.

	1. Context analysis
	1.1 Worksheet OM-1: problems & solutions
	1.2 Worksheet OM-2: process & people involved
	1.3 Worksheet OM-5: technical and business feasibility
	1.4 Worksheet TM-1: task analysis
	1.5 Worksheets TM-2: knowledge used in the selected task
	1.6 Worksheets AM-1: humans: expected capabilities and skills

	2. Knowledge model
	2.1 Task knowledge
	2.1.1 Task template
	2.1.2 Task decomposition diagram
	2.1.3 Task and Task method description

	2.2 Inference knowledge
	2.3 Domain knowledge
	2.3.1 Domain schema
	2.3.2 Rule types
	2.3.3 Knowledge base

	2.4 Scenarios
	2.4.1 Fast lasagne with pork and spinach
	2.4.2 Beetroot chocolate cake

	3. Communication model
	3.1 Communication plan
	3.2 Worksheets CM-1: Transactions description
	3.3 Worksheets CM-2: Information exchange specifications

	4. Design model
	4.1 Worksheet DM-1: System architecture
	4.2 Worksheet DM-2: Target implementation platform

	5. The prototype
	5.1 Description
	5.2 How it works
	5.2.1 Heuristic evaluation version
	5.2.2 Verify-Critique-Modify version

	5.3 What is missing
	5.4 Example scenarios

	6. Reflection
	6.1 Reflection on project approach
	6.2 Reflection on knowledge elicitation
	6.3 Reflection on knowledge modeling
	6.4 Reflection on prototyping
	6.5 Future work

	Bibliography
	APPENDICES
	APPENDIX A - Expert interview: card sorting
	APPENDIX B - Traces: “heuristic evaluation” version
	B.1 Fast lasagne with pork and spinach
	B.2 Beetroot chocolate cake

	APPENDIX C - Traces: “verify-critique-modify” version
	C.1 Fast lasagne with pork and spinach
	C.2 Beetroot chocolate cake

